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Abstract

Effective communication between humans often depends on selecting the most
appropriate utterance based on context, ensuring the listener interprets and acts
upon the intended message. This selection process involves generating multiple
candidate utterances and then selecting the optimal utterance from these candi-
dates. This paper examines the impact of different decoding algorithms to generate
such candidates and if diversity in these candidates plays a crucial role or not. To
examine this, a speaker must describe a target object in a way that distinguishes
it from two distractors, and the listener must identify the correct target to achieve
a successful outcome. Specifically, this paper compares three decoding methods,
Multinomial Sampling, Beam Decoding, and Diverse Beam Decoding to exam-
ine their effectiveness in this context. The findings highlight the importance of
diversity within candidate utterances, through comparative analysis between the
decoding methods. Diverse Beam Decoding comes forth as the most promising,
demonstrating improved potential in fluency and accuracy compared to Multino-
mial Sampling and the traditional Beam Decoding method.
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Chapter 1

Introduction

Language is the foundation of human communication. It allows humans to ex-
change their ideas, intentions and emotions, making us unique compared to other
species. However, despite extensive research, the mechanisms of language-based
communication are not yet fully understood. How do speakers convey meaning
through words? How do listeners interpret intended messages despite the poten-
tial ambiguities in language? These questions remain unanswered, yet they are
crucial for a complete understanding of linguistics.

"How exactly does an individual attempt to express their thoughts about a sce-
nario to a listener?" This question raises curiosity, because it explores the complex
process of translating personal experiences and perceptions into understandable
communication, highlighting the complexities of human communication through
language. Speakers in conversation carefully select their words. Their aim is to
clearly illustrate scenarios for listeners, enabling them to visualize and comprehend
the situation (Frank et al. 2012).

When selecting words, speakers often consider various options and then choose
the ones they deem most fitting for the listener. This involves an internal process
where various phrases, are weighed against factors such as the listener’s back-
ground, knowledge, and potential interpretations. By choosing the most appro-
priate words, speakers attempt to communicate their message accurately and ef-
fectively, improving mutual understanding. This process can be seen as sampling,
where speakers sample different linguistic options before settling on the best choice.

This paper will focus on the importance of sampling in conversations that require
pragmatic reasoning. Specifically, it will explore the question, "Which sequence
decoding technique generates the best candidates for pragmatic reasoning in an
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image referential game setting?". The pragmatic conversations will be simulated
with the use of a referential image game.

The game in this paper consists of three images in total and involves a conversa-
tion between two types of agents, a Speaker and a Listener. The Speaker receives
the three images and is informed of the target image that needs to be described.
The Speaker’s task is to generate a caption that describes the target image in a
way that it can be distinguished from the other two images in the game. During
the game, the Listener is presented with the three images along with the Speaker’s
caption. If the Listener correctly identifies the target image based on the caption,
the game is won; otherwise, it is lost.

It is hypothesized that diversity in the candidate samples, generated by the decod-
ing techniques, will impact the effectiveness of pragmatic reasoning in this context.
This hypothesis is made due to the importance of having various candidates that
are not similar to choose from when trying to describe the target. If all candidates
are alike, the importance of choosing the optimal one decreases.
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Chapter 2

Theoretical Background and
Methodology

This chapter provides all the necessary background information. It begins by
discussing the method used to evaluate pragmatic reasoning within the context of
a reference game. After, it explains the different decoding methods.

2.1 Referential Messaging Games
This paper researches pragmatic reasoning in a referential game context. The
referential games in this paper only consider real world images. The game is
played between a listener L and a speaker S.

1. Reference candidates r1 r2 and r3 are revealed to both players.

2. S is secretly assigned a random target t ∈ {1, 2, 3}.

3. S produces a description that distinguishes it from the other reference can-
didates d = S(t, r1, r2, r3), which is shown to L.

4. L chooses c = L(d, r1, r2, r3).

5. The speaker and listener win if c = t.

.
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Figure 2.1: The speaker provides a description (c) when given a target image (a)
alongside two distractor images (b). The provided description highlights a yellow
surfboard, which is present in (a) but not in (b).

Figure 2.1 illustrates a typical scenario of a reference game. To obtain successful
collaboration between S and L, it is important that S effectively communicates
and accomplishes the communicative goal of the game. The utterance generated
by S must not only be accurate but also pragmatic, demonstrating a detailed
understanding of L’s behavior and expectations (Andreas et al. 2016). Several key
components play an important role in generating such effective utterances in the
context of a reference game.

2.1.1 Building Blocks for Multimodal Representation

The models for both the listener and speaker are created from a basic kit of tools
designed for implementing multimodal representations of images and text. They
make use of the following tools.

1. a image encoder REFe

2. a description encoder DESe

3. a choice ranker R

4. a image describer D

The image encoder REFe encodes an image so the models can process it. The
description encoder DESe encodes a description, also known as an utterance, of an
image to include it in the analysis. The choice ranker R takes an encoded descrip-
tion and a set of image encodings, assigning a score to each (description, image)
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pair. Finally, the referent describer D takes an image encoding and generates a
description for the image.

Choice Ranker

The choice ranker takes an utterance and a set of image representations, assigning
a score to each pair formed by an utterance and an image. These scores are
then converted into a probability distribution over the images (Andreas et al.
2016). Essentially, the choice ranker enables the creation of a probabilistic model
that determines which image from a set of image representations is most likely to
correspond with a given utterance (Andreas et al. 2016).

2.1.2 Literal Listener

The literal listener Listenerl functions by mapping utterances to images. It takes
an utterance and a set of image representations, then selects the image considered
to most likely match the utterance. This selection process is provided by encoding
the utterance with the DESe and the images with the REFe. Then through the use
of the choice ranker R, it creates the distribution that shows what image matches
the utterance most (Andreas et al. 2016).

ed = DESe(d)

er1 = REFe(r1)

er2 = REFe(r2)

er3 = REFe(r3)

PListenerl(i|d, r1, r2, r3) = R(eri |er−i
, ed)

Figure 2.2: The formula of model Listenerl. The listener makes use of the choice
ranker to provide a distribution that allows the listener to pick the most fitting
referent for an utterance.

The literal listener model Listenerl is typically trained by maximizing the prob-
ability that the model correctly identifies an image given an utterance, distinguish-
ing it from other images that closely resemble the target image (Andreas et al.
2016).

2.1.3 Literal Speaker

The literal speaker Speakerl is provided with an image, which serves as the basis for
generating an utterance in English-language that describes the image accurately
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(A. Liu et al. 2023). It produces multiple utterances describing the target image
and provides a distribution indicating which utterance is most likely to describe
the target effectively without any pragmatic context. This process is done through
the use of the referent encoder REFe and the image describer D (Andreas et al.
2016).

er1 = REFe(r)

PSpeakerl(d|r) = D(d|e) (2.1)

Figure 2.3: The formula of model Speakerl, the speaker makes use of the image
describer and the image encoder to produce a description for a given image.

The literal speaker is typically implemented using an LSTM-based utterance
generation model, alongside an image recognition model, often based on architec-
tures like ResNet (A. Liu et al. 2023), (Degen 2023), (Andreas et al. 2016), (White
2020).

2.1.4 Pragmatic Speaker

The pragmatic speaker Speakerp contains both Speakerl and Listenerl models. It
uses them to obtain an utterance distribution from the literal speaker and scores
it with the literal listener to choose the most contextually-appropriate utterance
(Andreas et al. 2016).

The core of pragmatic reasoning lies in the pragmatic speaker’s ability to an-
ticipate what the listener would consider the best sample. By making use of the
literal listener’s evaluations, the pragmatic speaker aims to identify and choose the
utterance that would be most effective in communicating the target image to the
listener (Degen 2023). This process of choosing the optimal utterance based on
the literal listener’s evaluations and literal speaker utterance distribution is also
known as re-ranking (White 2020).

Sampling

Generating every possible utterance that a literal listener can produce based on a
reference image is feasible when dealing with a small, fixed vocabulary. However,
this task becomes infeasible with a large vocabulary, especially in reference games
using real-world images (White 2020). For example, describing such images can
quickly lead to vocabularies of 50,000 words or more. If we set a maximum ut-
terance length of 10 words, the number of possible combinations would be on the
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order of 5000010. This large number makes finding the optimal utterance using a
pragmatic speaker computationally infeasible in such scenarios. To address this
issue, sampling techniques are introduced. These methods use selected decoding
strategies to generate a set of utterances using the literal speaker. An important
aspect is the proposal distribution used for sampling sentences that are likely to
be well understood by the literal listener (Andreas et al. 2016), displaying the im-
portance of an effective decoding method. The process of the pragmatic speaker
therefore becomes the following:

1. Draw samples d1, . . . , dn from PSpeakerl(·|ri).

2. Score samples: pk = PSpeakerl(d|r)
λ · PListenerl(i|dk, r1, r2, r3)λ−1.

3. Select dk such that k = argmax pk.

While step two would suffice without the use of Speakerl it typically is included
in research due to its role in addressing imperfections in the listener model (An-
dreas et al. 2016), (White 2020), (A. Liu et al. 2023). Without Speakerl, there is
a potential issue where the speaker model might generate sentences that obtain
the correct response from Listenerl, but do not resemble natural human language
(Goodfellow et al. 2014). To prevent this, the pragmatic speaker considers two
criteria. First, ’how likely is it that a listener would interpret this sentence cor-
rectly?’ and second, ’how likely is it that a speaker would naturally produce it?’
(Andreas et al. 2016). So by making use of the Speakerl in step two this preferred
outcome is produced.

2.1.5 Rational Speech Act Framework

The introduction of multimodal approaches to solving reference games in a speaker-
listener setting was first introduced by David Lewis (Lewis 1969). David Lewis’s
framework provided a foundation for understanding pragmatic reasoning in com-
munication through the use of signaling games. Expanding David Lewis’s work,
the Rational Speech Act (RSA) framework was introduced by (Goodman et al.
2016). This research described RSA as a model that implements a social cognition
approach to interpreting utterances (Goodman et al. 2016).

The introduced RSA model in (Goodman et al. 2016) discusses pragmatic rea-
soning within communication by modeling interactions between a speaker and a
listener similar to the approach in (Lewis 1969). This combined approach offers a
computational solution to pragmatically solving signaling games, such as reference
games. Additional studies, such as (White 2020), extended the RSA framework
to include variants like Sampled RSA and Full RSA. Where Full RSA uses the
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entire vocabulary to generate the optimal utterance and the Sampled RSA variant
optimizes computational efficiency by sampling utterances from the literal speaker
similar to how the pragmatic speaker utilizes the re-ranking in this paper.

RSA is considered an important framework, because it provides a computational
solution to resolving reference games, therefore advancing our understanding of
how pragmatic reasoning works in communicative contexts.

2.2 Decoding Methods
There are various decoding methods used to obtain samples from the literal speaker.
In this paper three specific decoding methods will be discussed to obtain such sam-
ples.

2.2.1 Multinomial Sampling

Multinomial sampling is a technique used to generate utterances for reference
game images. This algorithm produces interesting results due to the randomness
involved in selecting words from a multinomial distribution. Specifically, it ran-
domly selects the next token based on the probability distribution over the entire
vocabulary provided by the model. Every token with a non-zero probability has a
chance of being selected, which reduces the risk of repetition. However, this same
randomness can sometimes lead to non-fluent or grammatically incorrect utter-
ances.

The algorithm generates utterance samples for a reference game target image in
the following way:

1. The number of utterances to be generated is specified for the multinomial
sampling task, along with the image representation of the reference game
target and the maximum utterance size.

2. The multinomial sampling task uses a multinomial distribution to sample a
token for each utterance.

3. The task continues to iterate, selecting a new token for each sample utterance
at every iteration until the maximum utterance length is reached.

4. The task returns the sampled utterances.

Multinomial sampling is computationally feasible, because it samples at each it-
eration, making it practical even with large vocabularies. This efficiency allows it
to be applied in a reference game setting based on real-world images.
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1 # Encode the image representation
2
3 # Do this until the maximum sequence length is reached
4 for i=1 , ... I do:
5 for j=1 ... J do: # For every sample utterance
6 # Obtain the logits that represent the speakers
7 # belief for each possible word at this iteration
8 # by making use of the encoded image and speaker model
9

10 # Use of multinomial distribution
11 # to draw a word sample
12
13 # Add the word to sample utterance
14
15 # Return set of B utterances

Figure 2.4: Pseudocode representing the multinomial sampling method. Where
I is equal to the max sequence length of the utterances and J is equal to the
amount of samples that need to be generated. This method utilizes the speaker
model on line 6 and a multinomial distribution on line 10 to generate a set amount
of utterances.

2.2.2 Pruning

Pruning is an important technique that is applied within the beam decoding al-
gorithm, when generating utterance samples it reduces the number of candidate
beams at each step of the decoding process. This reduction is important to im-
prove runtime efficiency when generating samples. The goal of pruning is to focus
computational resources on the most promising sequences, typically those with
higher probabilities or scores according to a scoring function. Pruning helps to
maintain a manageable search space within decoding algorithms while still aiming
to capture high-quality samples. It ensures that the decoding algorithm remains
computationally feasible even when dealing with large vocabularies.

2.2.3 Beam Decoding

Beam decoding is a search algorithm that can be used to draw samples for ut-
terances of images. It is typically employed to generate sequences, and since the
utterances describing images in a reference game are sequences of words, it is well-
suited for this purpose (Vijayakumar 2016). Beam decoding is feasible within a
reference game setting with real world images to generate samples as it implements
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pruning.

Beam decoding, stores the top-B highly scoring candidates at each iteration of
the algorithm. At each iteration, beam decoding considers all possible single to-
ken extensions of the candidate beams given by the vocabulary and then selects
the B most likely beam extensions for the next iteration. This selection process is
where pruning is implemented (Vijayakumar 2016). Another method that can be
applied in parallel with the top-B pruning, is to restrict consideration to only the
top-K most likely single token extensions, this reduces the amount of extensions
to increase computational efficiency. Since beam decoding maintains multiple hy-
potheses at each time step and eventually selects the one with the highest overall
probability for the entire utterance, it can identify high-probability sequences that
begin with low-probability initial tokens, which would have been overlooked by
methods such as greedy search. However, while beam decoding allows for the ex-
ploration of multiple sequences in parallel, it often favors a single highly valued
beam, resulting in outputs that differ only slightly from one another.

Sequence Length Normalization

An additional method that can be applied in beam decoding is sequence length
normalization. This method ensures that all candidate utterances are treated
equally. In beam decoding, finished utterances can appear within the top-B beams
selected for the next iteration. Since these beams cannot be extended further,
they are stored for re-evaluation at the end of the utterance generation process.
Bias towards choosing shorter sequences occurs, because the overall probability
of a sequence decreases as its length increases. Sequence length normalization is
applied to prevent this bias when re-evaluating all found candidates.

P’(U) =
logP (U)

Nλ

Figure 2.5: The formula for sequence length normalization, where U is the proba-
bility of a finished utterance and N represents the length of that utterance. λ is the
penalty weight that scales the log-probability of the sequence by a factor related
to its length. When λ = 1.0, it is equivalent to averaging the log-probabilities.
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1 # Encode the image representation
2
3 # Do this until the maximum sequence length is reached
4 for i=1 , ... I do:
5 # Obtain the logits that represent the speakers
6 # belief for each possible word at this iteration
7 # by making use of the encoded image and speaker model
8
9 # sample utterance

10 for j=1 ... J do: # For every sample utterance
11 # Extend the utterance with all words
12 # Optionally apply top -K to only extend with
13 # The top -K words
14
15 # Perform top -B pruning on all extended utterances
16 # Store finished utterances within the top -B utterances
17
18 # Perform sequence length normalization
19 # Perform top -B pruning on all found utterances
20 # Return set of B utterances

Figure 2.6: Pseudocode representing the beam decoding method. Where I is
equal to the max sequence length of the utterances and J is equal to the amount
of samples that need to be generated. This method utilizes the speaker model on
line 5 and extends all beams on line 11, afterwards beam pruning is applied on
line 15.

2.2.4 Diverse Beam Decoding

Diverse beam decoding is a variation of beam decoding that stimulates more di-
versity in the outputted sequences. In standard beam decoding, there is a habit
for beams to be very similar, which can be computationally wasteful (Vijayakumar
2016). To prevent this, diverse beam decoding introduces several innovations.

Instead of treating all beams equally, diverse beam decoding organizes them into
groups. Within each group, the algorithm operates independently. The diver-
sity among candidate sequences is measured using a dissimilarity term, calculated
per group instead of across all beams. This group adjustment avoids the need
to compare every beam with every other, which leads to computational efficiency
(Vijayakumar 2016).

The algorithm operates left-to-right through time and top to bottom through
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groups. This means that the algorithm iterates like traditional beam search, but
does it per group. This involves independently performing beam search for each
group. After each group iteration, the algorithm adjusts the probabilities of the
beams using a diversity penalty γ. When doing so, it holds the previous groups
fixed.

These adjustments discourage the generation of identical or overly similar beams.
By focusing on diversity, diverse beam decoding promotes a wider range of po-
tential sequences, thereby improving the effectiveness of the decoding process (Vi-
jayakumar 2016).
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1 # Encode the image representation
2
3 # Do this until the maximum sequence length is reached
4 for i=1 , ... I do:
5 # Obtain the logits that represent the speakers
6 # belief for each possible word at this iteration
7 # by making use of the encoded image and speaker model
8
9 for g=1 .. G do: # For every group

10
11 # For every sample utterance in the group
12 for j=1 ... J do:
13
14 # Extend the utterance with all words
15 # Optionally apply top -K to only extend with
16 # The top -K words
17
18 # Perform top -B pruning on all extended utterances
19 # Store finished utterances within the top -B
20 # utterances of this group
21
22 # Adjust the probabilities of the chosen beams
23 # To lower their chances in the upcoming groups
24
25 # Perform sequence length normalization
26 # Perform top -B pruning on all , found utterances
27 # Return set of B utterances

Figure 2.7: Psuedocode representing the diverse beam decoding method. Where I
is equal to the max sequence length of the utterances and J is equal to the amount
of samples that need to be generated. G is the amount of groups. On line 9, it is
visible that an additional loop is created to iterate through each group, showing
one of the primary differences between beam decoding and diverse beam decoding.
Another important difference occurs on line 22, where adjustments are made to
the probabilities of selected beams, resulting in varied top-K words in following
group iterations.
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Chapter 3

Related Work

This chapter discusses research that is relevant to this study. It features findings
from other referential game research implemented within a reference game setting
and reviews the work that introduced the diverse beam search decoding algorithm.

3.1 Solving Referential Games
In the research of referential games, various studies have examined into under-
standing how language develops through interactive communication. Studies have
explored the differences between Full RSA and Sampled RSA models, evaluating
whether Sampled RSA can achieve comparable accuracy. Additionally, previous
research has used reference games involving navigation tasks or simple images
rather than real world images. Furthermore, studies have applied reinforcement
learning to the pragmatic speaker within a reference game setting, investigating
its impacts on communication strategies.

For instance, (White 2020) applied different speaker models to two seperate ref-
erential game scenarios. One involved a dataset named "shapeworld", featuring a
small variety of differently colored shapes, while the other focused on colors that
were similar to each other. Their findings highlighted that computing the Full
RSA model for the color-based referential game was infeasible due to the large
vocabulary required, this shows the need for sampling in more difficult referential
game settings. They also noted that in more challenging reference games like those
involving the colors dataset, speaker utterances needed to be effective, concise, and
conventional. On the other hand, the simpler reference games did not need strict
conventional language use, neither did they require lengthy utterances, as the tar-
gets were easier to describe with fewer words.
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Another study by (Andreas et al. 2016) implemented a referential game setting
using images where identically drawn characters were presented performing vari-
ous tasks. Part of the study was to evaluate the number of samples required for
generating effective utterances that accurately described the target. This evalua-
tion is important since a too large number of samples could cause the model to be
too slow to use in practice. When drawing samples from the base speaker model,
the findings mention that utilizing 100 samples provided a reliable baseline for
producing suitable descriptions. The result that drawing 100 samples improves
the accuracy score, highlights the importance of diversity, as selecting from the
top ten samples proves less effective compared to choosing from a larger pool of
100.

Both studies show the importance of sample quality in winning reference games.
(White 2020) highlights that sample fluency and conciseness impacts accuracy,
while (Andreas et al. 2016) indicates that increasing the amount of samples re-
sults in higher accuracy. Therefore, using more diverse samples could potentially
increase fluency and accuracy, without using a large number of samples.

3.2 Decoding Diverse Solutions from Neural Sequence Mod-
els

In the research by (Vijayakumar 2016), diverse beam search is proposed as a so-
lution to solve the issue of generating similar utterances encountered with the
traditional beam search algorithm. The study evaluates the performance of beam
search and diverse beam search by applying both methods to caption various im-
ages. It highlights that the complexity of the input images affects the diversity of
generated captions. Complex images allow for varied descriptions, while simpler
images do not.
The findings mention that traditional beam search often produces similar utter-
ances, resulting in inherent ambiguity in tasks like image captioning. Diverse beam
search, on the other hand, outperforms it by generating more diverse utterances
while maintaining computational efficiency. As a result, the research concludes
that diverse beam search exceeds traditional beam search in various domains,
making it a reliable alternative.
Since beam search can introduce inherent ambiguity in image captioning, it is likely
to do the same in a reference game setting. The objective in reference games is to
describe the target in a way that distinguishes it from the distractors. Therefore,
diverse beam search is expected to outperform beam search in the results of this
study.
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Chapter 4

Experimental Setup

This paper focuses on two main outcomes, the speaker’s ability to accurately
describe the target in a manner that distinguishes it from the distractors, and
the diversity of the samples. These aspects are combined to assess the impact of
diversity during the sampling phase since it is hypothesized that diversity improves
the quality of candidate utterances. To evaluate these outcomes, the following
setup is established.

4.1 Reference Game Dataset
The images for the referential games are obtained from the Microsoft COCO: Com-
mon Objects in Context dataset, the dataset is introduced in (Lin et al. 2014).
The reference game images used in evaluation are based on the development set
to ensure that none of the images were used in training the speaker and listener
models. This selection prevents any overlap and guarantees an unbiased evalua-
tion.

To ensure reproducible results, the reference games were drawn using a fixed seed
value of 517 for the uniform random selection process. This seed value allows for
exact replication of the reference games used in the evaluation.

4.1.1 Distractor Difficulty

The evaluation involves two games with different levels of distractor difficulty,
one easy and the other hard. In harder games, the difficulty increases from the
greater similarity among the target and distractor images. The decision to evaluate
hard and easy games is guided by previous research, such as (Vijayakumar 2016),
(A. Liu et al. 2023) and (White 2020), which suggests that distractor images
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similar to the target referent require more complex captions to accurately describe
them. Therefore, different results are expected, as it is likely that varying levels
of diversity and fluency in the samples are needed to solve such games.

Easy Difficulty

Easy difficulty games are created by initially selecting the target images for each
game, this selection is made randomly and uniformly. Thereafter, for each target
image, a set number of distractors N is drawn uniformly at random. During the
evaluation of this paper, N is set to two.

Figure 4.1: An example of an easy reference game where the distractors (b) does
not closely resemble the target (a), winning involves describing the image (c) with-
out needing much detail.

Hard Difficulty

Hard difficulty games are generated using the same method as described in (A.
Liu et al. 2023). Similar to drawing easy difficulty games, each target image
is randomly and uniformly selected. Following this, for each target image, N
distractors are chosen. However, rather than selecting them uniformly at random,
a visual and textual similarity approach is applied.

Visual-based Cosine Similarity

The most visually similar images are computed based on the cosine similarity of
all image embeddings from a pretrained ResNet model. For each image in the
evaluation set, a similarity ranking of the next 1000 most visually similar images
is saved.
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Text-based Cosine Similarity

The textual similarity is based on the image captions included in the dataset in-
troduced in (Lin et al. 2014). The textual similarity is computed by applying
cosine similarity between vector representations of the image captions. The vector
representations are computed from embeddings generated using either the pre-
trained RoBERTa model (Y. Liu et al. 2019) or the pretrained CLIP mean pooled
model available in the sentence-transformers library (Reimers et al. 2019). Again
a similarity ranking of the next 1000 most similar images is saved.

Visual and Textual Cosine Similarity

The combined similarity ranking implements both visual-based and textual-based
cosine similarities. This process involves combining their respective similarity
scores.

The hard reference games were generated by uniformly and randomly choosing
N distractor images from the set of 1000 images based on visual and textual co-
sine similarity. During evaluation N is set to two.

Figure 4.2: An example of an hard reference game where the distractors (b) closely
resemble the target (a), winning involves providing a detailed description (c) that
effectively distinguishes the target from the similar distractors.

4.2 Pragmatic Speaker Model
This section describes the implementation of the various components used to model
the pragmatic speaker used during evaluation.
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4.2.1 Referent Encoder

Referent images are encoded using a pretrained ResNet model, introduced in (He
et al. 2016). This model processes each image to produce an embedding vector
that represents its features.

4.2.2 Description Encoder

Descriptions are encoded using the pretrained RoBERTa base tokenizer, intro-
duced in (Y. Liu et al. 2019). During evaluation the tokenizer has a vocabulary
size of 50 265. It tokenizes each utterance, assigning a unique token ID to each
token, therefore encoding the utterance.

4.2.3 Literal Listener Model

The literal listener receives a set of candidate images along with an utterance. It
uses the referent encoder to encode each image and the description encoder to
encode the provided utterance. Afterwards, it computes the dot product of each
image’s encoding with the utterance encoding, followed by applying the softmax
function to these dot products. This process determines the probability of how
closely related each image is to the utterance.

4.2.4 Literal Speaker Model

The literal speaker makes use of the referent encoder and an LSTM-based utterance
generation model. After generating a referent encoding using the referent encoder,
the speaker autoregressively generates an utterance using the LSTM network. The
process of utterance generation implements one of the three earlier mentioned
decoding methods. A vocabulary size of 50 265 is used.

4.2.5 Pragmatic Re-ranking

The pragmatic speaker uses the components discussed in this section to choose
the optimal utterance that best describes the target referent. It makes use of
the sampled utterances from the literal speaker and combines their probability
scores with those from the literal listener to select the utterance with the highest
probability. During evaluation, equal weight is given to both aspects.

21



4.3 Decoding Method Parameters
This section mentions the parameters used for the three implemented decoding
methods including the evaluated sample sizes and the reasoning behind their se-
lection.

4.3.1 Multinomial Sampling

Multinomial sampling is evaluated using three different sample sizes 5, 10, and 25.
The utterance length was fixed at 10, and a seed value of 517 was used for the
distribution. These specific sample sizes were used to make sure comparison with
diverse beam decoding was possible. Due to its long runtime, sample sizes larger
than 25 were not feasible for this study.

4.3.2 Beam Decoding

Beam decoding is evaluated using three different beam sizes 5, 10, and 25. The
utterance length was fixed at 10 and the top-K selection of words to extend the
beams with was equal to the beam size in all scenarios. These specific sample sizes
were used to make sure comparison with diverse beam decoding was possible. Due
to its long runtime, sample sizes larger than 25 were not feasible for this study.

4.3.3 Diverse Beam Decoding

Diverse beam decoding is evaluated using three different beam sizes 5, 10, and 25.
Each with different group sizes, varying between 2, 5, 10 and 25. Additionally,
different diverse penalty weight values 0.2, 0.8 and 0.01 were used. The diverse
penalty weight values are based on findings in the (Vijayakumar 2016) research,
the research mentions values between 0.2 and 0.8 work best, the value 0.01 was
used to simulate an extreme amount of diversity. The utterance length was fixed
at 10 and the top-K selection of words to extend the beams with was equal to
the beam size in all scenarios. These specific sample sizes were used to ensure the
algorithm could be computed efficiently. Sample sizes larger than 25 took too long
to compute and were therefore not feasible for this study.

4.4 Evaluation Metrics
This section describes the metrics used to evaluate the pragmatic speaker’s ability
to reason pragmatically and solve reference games. It will discuss the use of these
metrics and explain how they were computed.

22



4.4.1 Accuracy

The accuracy is evaluated using the average accuracy, which measures how often
the listener correctly selects the target, for N games. The evaluation is done by
dividing the number of times the target is correctly chosen by the total number of
games played.

Let A be the accuracy value, C be the amount of correct games and N the amount
of games played.

A =
C
N

4.4.2 Entropy

The entropy is evaluated using the average entropy, which measures how certain
the speaker is about its choice. If the entropy is low, the speaker is more confident
in its choice. On the other hand, higher entropy indicates greater uncertainty. If
diversity results in lower entropy, it means the model becomes more confident due
to the use of diverse sentences.

4.4.3 Distinct n-grams

During evaluation the diversity is measured using the amount of distinct unigrams,
bigrams and trigrams. For each game, the count of distinct n-grams is computed
from all sampled utterances. Before calculation, utterances are filtered to include
only words. This excludes special tokens such as EOS or BOS tokens. The evalu-
ation included two different n-gram measurements

The absolute number of n-grams represents the amount of distinct n-grams found
within the samples of a game. Let A be the absolute amount of n-grams, N denote
the amount of samples and G the amount of distinct n-grams in a single sample.
Then the absolute amount of n-grams is.

A =
N∑
i=1

(Gi)

The normalized number of n-grams is calculated by dividing the absolute amount of
distinct n-grams through the total number of words in all the combined samples of
a reference game. It represents a comparable value to the other decoding methods
because it is normalized, meaning that the length of the utterance does not affect
the comparison. Let A be the absolute amount of n-grams from a reference game
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and N be the total amount of words in the reference game, then the normalized
amount of n-grams n is.

n =
A
N
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Chapter 5

Results

This chapter presents the evaluation results, which cover two methods, perfor-
mance and diversity. Both methods were applied to easy and hard reference games.
The performance results show which of the three evaluated decoding methods is
optimal for solving the reference games. The diversity results display which de-
coding method produces the most varied samples. By combining these methods,
an observation can be made about whether diversity in the samples impacts the
ability to correctly solve a reference game. Throughout the results, beam decoding
will be referenced as BD and diverse beam decoding is referred to as DBD.

5.1 Performance

5.1.1 Easy Reference Games

In this section, the easy reference games are evaluated based on accuracy, entropy,
and runtime. The tables all represent the same decoding methods performed with
different numbers of samples. Table 5.1 shows the results for 5 samples per game,
where multinomial sampling is the most accurate and confident method. Table
5.2 shows the results for 10 samples per game, with DBD (10 groups and a diver-
sity penalty of 0.01) achieving the highest accuracy score, although multinomial
sampling remains the most confident approach due to its lower entropy score. In
Table 5.3, the results for 25 samples per game are displayed, and once again,
multinomial sampling is the most accurate and confident method, similar to Table
5.1. In all three cases, BD is outperformed by both multinomial sampling and
DBD. Multinomial sampling and DBD both show great potential and have almost
equal performance, with DBD performing best when using the most diverse di-
versity penalty. However, multinomial sampling has the least runtime, making it
the most computationally efficient. Given its similar performance to DBD, which
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has a significantly longer runtime, multinomial sampling appears to be the more
feasible option.

Nonetheless, all methods perform well, achieving higher than 80% accuracy in all
cases, indicating that all three decoding methods are capable of effectively playing
and solving easy reference games.

Performance with 5 samples
Decoding method Accuracy Entropy Runtime (S)

Multinomial Sampling 0.9 0.4321 3.310
BD (B: 5) 0.85 0.7858 9.860
DBD (G: 5, γ: 0.2) 0.87 0.8565 35.310
DBD (G: 5, γ: 0.8) 0.84 0.6688 34.180
DBD (G: 5, γ: 0.01) 0.89 0.6647 29.230

Table 5.1: Performance metrics with 5 samples. For 100 easy difficulty games
with an utterance length of 10. In this scenario, multinomial sampling achieves
the highest accuracy score, it is also the most confident choice based on the lowest
entropy score. DBD with a diversity penalty of 0.01 comes close to similar results
but takes alot longer to compute.
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Performance with 10 samples
Decoding method Accuracy Entropy Runtime (S)

Multinomial Sampling 0.89 0.4296 3.430
BD (B: 10) 0.89 0.9939 27.180
DBD (G: 2, γ: 0.2) 0.85 0.9776 44.117
DBD (G: 5, γ: 0.2) 0.87 1.1257 96.184
DBD (G: 10, γ: 0.2) 0.86 1.1132 176.020
DBD (G: 2, γ: 0.8) 0.85 0.8193 45.602
DBD (G: 5, γ: 0.8) 0.86 0.7829 95.842
DBD (G: 10, γ: 0.8) 0.87 0.7592 180.170
DBD (G: 2, γ: 0.01) 0.87 0.9123 44.030
DBD (G: 5, γ: 0.01) 0.85 0.9070 94.309
DBD (G: 10, γ: 0.01) 0.91 0.8500 183.030

Table 5.2: Performance metrics with 10 samples. For 100 easy difficulty games
with an utterance length of 10. In this scenario, DBD outperforms multinomial
sampling when applied with a diversity penalty of 0.01 and an individual group for
every sample utterance. However, multinomial sampling still is faster to compute
and a more confident choice based on the entropy.

Performance with 25 samples
Decoding method Accuracy Entropy Runtime (S)

Multinomial Sampling 0.95 0.4152 4.560
BD (B: 25) 0.87 1.1251 94.220
DBD (G: 2, γ: 0.2) 0.83 1.1269 190.017
DBD (G: 5, γ: 0.2) 0.85 1.1863 398.587
DBD (G: 25, γ: 0.2) 0.87 1.1891 1708.790
DBD (G: 2, γ: 0.8) 0.88 0.9680 169.327
DBD (G: 5, γ: 0.8) 0.82 0.9253 367.800
DBD (G: 25, γ: 0.8) 0.87 0.9143 1810.460
DBD (G: 2, γ: 0.01) 0.84 1.0637 163.675
DBD (G: 5, γ: 0.01) 0.86 1.0420 358.173
DBD (G: 25, γ: 0.01) 0.91 1.0672 1795.140

Table 5.3: Performance metrics with 25 samples. For 100 easy difficulty games
with an utterance length of 10. In this scenario, multinomial sampling outperforms
the other methods with at least a 4% higher accuracy while also being the fastest
to compute. DBD is the second best method when implemented with an individual
group for each sample utterance. However, it takes significantly longer to compute
compared to multinomial sampling.
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5.1.2 Hard Reference Games

In this section, the hard reference games are evaluated based on accuracy, entropy,
and runtime. The tables all represent the same decoding methods performed with
different numbers of samples. It is clear that accuracy values during hard games
are considerably lower than during easy games, this shows the need for better prag-
matic reasoning to solve harder difficulty games. These lower accuracy scores also
suggest that there is still room for improvement in the pragmatic speaker. An in-
teresting change compared to the easy reference games is that in all three cases 5.4,
5.5, and 5.6 DBD achieves higher accuracy than multinomial sampling, which was
not the case for the easy games. However, multinomial sampling still consistently
shows the lowest entropy values, indicating higher confidence in all cases. Another
difference from the easy reference games is that a diversity penalty of 0.01 was not
always optimal for DBD, a diversity penalty of 0.2 achieved better accuracy in 5.4.

The runtime of multinomial sampling still remains significantly lower than the
other methods, making it the most computationally efficient for hard games as
well. Traditional BD is still outperformed by the other decoding methods.

Performance with 5 samples
Decoding method Accuracy Entropy Runtime (S)

Multinomial Sampling 0.49 0.4749 3.172
BD (B: 5) 0.45 0.8391 10.809
DBD (G: 5, γ: 0.2) 0.50 0.9773 35.792
DBD (G: 5, γ: 0.8) 0.45 0.6740 32.826
DBD (G: 5, γ: 0.01) 0.46 0.8578 32.927

Table 5.4: Performance metrics with 5 samples. For 100 hard difficulty games
with an utterance length of 10. In this scenario, DBD outperforms multinomial
sampling, which was not the case in 5.1. Another interesting observation is that
a diversity penalty of 0.2 outperforms a diversity penalty of 0.01 which also was
not the case in 5.1. However multinomial sampling still is the fastest to compute
being at least 10 times quicker than any DBD method.
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Performance with 10 samples
Decoding method Accuracy Entropy Runtime (S)

Multinomial Sampling 0.51 0.4934 3.823
BD (B: 10) 0.46 0.9441 27.304
DBD (G: 2, γ: 0.2) 0.46 1.1481 42.776
DBD (G: 5, γ: 0.2) 0.51 1.0478 94.363
DBD (G: 10, γ: 0.2) 0.48 1.2354 184.092
DBD (G: 2, γ: 0.8) 0.44 0.8711 45.527
DBD (G: 5, γ: 0.8) 0.47 0.8127 90.533
DBD (G: 10, γ: 0.8) 0.48 0.8121 182.154
DBD (G: 2, γ: 0.01) 0.42 1.0848 40.563
DBD (G: 5, γ: 0.01) 0.52 1.0883 92.760
DBD (G: 10, γ: 0.01) 0.49 1.0109 170.902

Table 5.5: Performance metrics with 10 samples. For 100 hard difficulty games
with an utterance length of 10. In this scenario, DBD with a diversity penalty
of 0.01 and 2 samples per group is the most accurate method. This differs from
the most accurate method in 5.2 which had the same diversity penalty but more
groups. Multinomial sampling still achieves close to equal results and is the most
confident choice based on the entropy values.

Performance with 25 samples
Decoding method Accuracy Entropy Runtime (S)

Multinomial Sampling 0.51 0.5447 4.027
BD (B: 25) 0.50 1.1266 97.932
DBD (G: 2, γ: 0.2) 0.50 1.2351 175.340
DBD (G: 5, γ: 0.2) 0.51 1.3643 358.602
DBD (G: 25, γ: 0.2) 0.50 1.4106 1747.980
DBD (G: 2, γ: 0.8) 0.46 1.0093 161.418
DBD (G: 5, γ: 0.8) 0.45 0.9781 357.234
DBD (G: 25, γ: 0.8) 0.42 0.9161 1663.919
DBD (G: 2, γ: 0.01) 0.48 1.2066 170.002
DBD (G: 5, γ: 0.01) 0.43 1.1641 343.541
DBD (G: 25, γ: 0.01) 0.52 1.3280 1603.468

Table 5.6: Performance metrics with 25 samples. For 100 hard difficulty games
with an utterance length of 10. In this scenario, multinomial sampling performs
worse than the DBD method in accuracy which differs from the results show in
in 5.3. However, multinomial sampling still is the most confident choice and is far
more efficient to compute. Which makes it a good alternative of the DBD method.
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5.2 Diversity

5.2.1 Easy Reference Games

The following results evaluate the diversity in the easy reference games, comparing
different distinct values of n-grams that indicate the diversity in vocabulary used
for sampled utterances. Throughout all results in Tables 5.7, 5.8 and 5.9 DBD
with a diversity penalty of 0.01 consistently produces the most diverse sample
utterances. Multinomial Sampling produces an equal or greater amount of diverse
utterances compared to the traditional BD method. When comparing diversity
with accuracy, as shown in Tables 5.1, 5.2 and 5.3, it becomes clear that the
diversity in sampled utterances impacts accuracy. An example of this is that
methods that outshine BD in terms of accuracy also show greater diversity than
BD.

Distinct n-grams with 5 samples
Decoding method Normalized Absolute

n=1 n=2 n=3 n=1 n=2 n=3

Multinomial Sampling 0.4382 0.5838 0.5810 1942 2588 2576
BD (B: 5) 0.3981 0.4726 0.4571 2017 2397 2319
DBD (G: 5, γ: 0.2) 0.3221 0.3800 0.3644 1668 1968 1888
DBD (G: 5, γ: 0.8) 0.2335 0.2568 0.2439 1222 1343 1275
DBD (G: 5, γ: 0.01) 0.4935 0.6192 0.5880 2527 3173 3015

Table 5.7: Distinct n-grams with 5 samples. For 100 easy difficulty games with an
utterance length of 10. In this scenario, it is clear to see that a diversity penalty
of 0.01 produces the most diverse samples, with multinomial sampling being the
second most diverse method. BD produces more diverse samples than DBD when
using a diversity penalty that is not 0.01. This suggests that for obtaining diverse
samples, values lower than 0.2 should be used, as traditional BD will otherwise
generate more diverse samples.
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Distinct n-grams with 10 samples
Decoding method Normalized Absolute

n=1 n=2 n=3 n=1 n=2 n=3

Multinomial Sampling 0.3089 0.4561 0.4784 2737 4042 4240
BD (B: 10) 0.3194 0.4116 0.4115 3183 4102 4101
DBD (G: 2, γ: 0.2) 0.2995 0.3881 0.3868 3065 3972 3959
DBD (G: 5, γ: 0.2) 0.2862 0.3630 0.3598 2963 3758 3724
DBD (G: 10, γ: 0.2) 0.2713 0.3488 0.3464 2823 3629 3605
DBD (G: 2, γ: 0.8) 0.1690 0.1991 0.1942 1756 2069 2018
DBD (G: 5, γ: 0.8) 0.1483 0.1729 0.1690 1564 1821 1779
DBD (G: 10, γ: 0.8) 0.1595 0.1896 0.1867 1681 1997 1967
DBD (G: 2, γ: 0.01) 0.3373 0.4444 0.4439 3440 4534 4529
DBD (G: 5, γ: 0.01) 0.3948 0.5303 0.5192 4054 5448 5334
DBD (G: 10, γ: 0.01) 0.3921 0.5442 0.5343 4067 5645 5543

Table 5.8: Distinct n-grams with 10 samples. For 100 easy difficulty games with
an utterance length of 10. This scenario shows the same pattern as 5.7. DBD
produces the most diverse samples with a diversity penalty of 0.01. A new pattern
is shown, where a larger group value results in more diverse samples, this correlates
with the findings in (Vijayakumar 2016).
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Distinct n-grams with 25 samples
Decoding method Normalized Absolute

n=1 n=2 n=3 n=1 n=2 n=3

Multinomial Sampling 0.1856 0.3208 0.3679 4111 7104 8150
BD (B: 25) 0.2271 0.3318 0.3422 5669 8285 8544
DBD (G: 2, γ: 0.2) 0.2195 0.3344 0.3492 5940 9049 9449
DBD (G: 5, γ: 0.2) 0.2276 0.3511 0.3658 5935 9149 9532
DBD (G: 25, γ: 0.2) 0.1943 0.2871 0.3002 5159 7619 7968
DBD (G: 2, γ: 0.8) 0.1237 0.1642 0.1670 3376 4477 4555
DBD (G: 5, γ: 0.8) 0.0983 0.1286 0.1310 2595 3392 3453
DBD (G: 25, γ: 0.8) 0.1054 0.1414 0.1459 2798 3752 3872
DBD (G: 2, γ: 0.01) 0.2359 0.3653 0.3814 6369 9860 10292
DBD (G: 5, γ: 0.01) 0.2664 0.4210 0.4334 6938 10960 11282
DBD (G: 25, γ: 0.01) 0.3090 0.5181 0.5326 8157 13674 14057

Table 5.9: Distinct n-grams with 25 samples. For 100 easy difficulty games with
an utterance length of 10. In this scenario the same pattern is present as in 5.7
and 5.8. DBD with a diversity penalty of 0.01 still produces the most diverse
utterances. However, the results also show that the normalized uni-gram values
are far lower for all decoding methods than in 5.7 and 5.8. This could imply that
using 25 samples does not necessarily result in more diverse samples compared to
using 10 samples.
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5.2.2 Hard Reference Games

The following results evaluate the diversity in the hard reference games. Similar
to the easy games, the diversity results for the hard reference games show that
DBD with a diversity penalty of 0.01 produces the most diverse utterances, with
multinomial sampling being the second most diverse method. The consistency in
diversity with accuracy in the hard games aligns with the findings in the easy
games.

An interesting observation when comparing the hard and easy results is that the
diversity of n-grams remains quite consistent across decoding methods in both
cases, despite the significant differences in accuracy between the game difficulties.

Distinct n-grams with 5 samples
Decoding method Normalized Absolute

n=1 n=2 n=3 n=1 n=2 n=3

Multinomial Sampling 0.4670 0.6187 0.6124 2073 2746 2718
BD (B: 5) 0.3988 0.4735 0.4580 2045 2428 2348
DBD (G: 5, γ: 0.2) 0.3390 0.4042 0.3896 1773 2114 2038
DBD (G: 5, γ: 0.8) 0.2285 0.2525 0.2406 1222 1349 1285
DBD (G: 5, γ: 0.01) 0.5008 0.6261 0.5948 2553 3196 3038

Table 5.10: Distinct n-grams with 5 samples. For 100 hard difficulty games with
an utterance length of 10. In this scenario DBD produces the most diverse sample
utterances with a diversity penalty of 0.01. However multinomial sampling does
show higher normalized bi-gram and tri-gram values. This is likely due to the
random aspect of the multinomial distribution, which occasionally results in non-
fluent utterances, unlike the fluent decoding of DBD.
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Distinct n-grams with 10 samples
Decoding method Normalized Absolute

n=1 n=2 n=3 n=1 n=2 n=3

Multinomial Sampling 0.3208 0.4794 0.5008 2843 4248 4439
BD (B: 10) 0.3109 0.4014 0.4014 3131 4037 4036
DBD (G: 2, γ: 0.2) 0.2997 0.3897 0.3897 3083 4007 4008
DBD (G: 5, γ: 0.2) 0.2811 0.3592 0.3576 2931 3746 3729
DBD (G: 10, γ: 0.2) 0.2704 0.3473 0.3463 2834 3638 3627
DBD (G: 2, γ: 0.8) 0.1739 0.2040 0.1986 1811 2123 2066
DBD (G: 5, γ: 0.8) 0.1585 0.1865 0.1836 1674 1969 1938
DBD (G: 10, γ: 0.8) 0.1543 0.1822 0.1801 1647 1943 1920
DBD (G: 2, γ: 0.01) 0.3355 0.4386 0.4389 3429 4481 4485
DBD (G: 5, γ: 0.01) 0.3970 0.5296 0.5164 4087 5453 5318
DBD (G: 10, γ: 0.01) 0.3980 0.5461 0.5327 4122 5657 5520

Table 5.11: Distinct n-grams with 10 samples. For 100 hard difficulty games with
an utterance length of 10. In this scenario the same pattern as in 5.8 and 5.10
is shown. DBD produces the most diverse utterances with a diversity penalty of
0.01. A difference compared to 5.10 is that the normalized tri-gram values of DBD
with a diversity penalty of 0.01 and a group size of 5 and 10 are greater than the
multinomial sampling tri-gram values.
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Distinct n-grams with 25 samples
Decoding method Normalized Absolute

n=1 n=2 n=3 n=1 n=2 n=3

Multinomial Sampling 0.1877 0.3238 0.3697 4170 7190 8208
BD (B: 25) 0.2226 0.3267 0.3380 5557 8147 8425
DBD (G: 2, γ: 0.2) 0.2190 0.3338 0.3492 5904 8991 9406
DBD (G: 5, γ: 0.2) 0.2269 0.3481 0.3621 5925 9087 9450
DBD (G: 25, γ: 0.2) 0.1975 0.2924 0.3072 5239 7755 8148
DBD (G: 2, γ: 0.8) 0.1277 0.1713 0.1754 3481 4664 4774
DBD (G: 5, γ: 0.8) 0.1043 0.1377 0.1402 2762 3642 3706
DBD (G: 25, γ: 0.8) 0.1030 0.1379 0.1431 2750 3683 3819
DBD (G: 2, γ: 0.01) 0.2322 0.3540 0.3709 6256 9536 9991
DBD (G: 5, γ: 0.01) 0.2677 0.4229 0.4356 6965 10998 11331
DBD (G: 25, γ: 0.01) 0.3066 0.5093 0.5244 8073 13411 13808

Table 5.12: Distinct n-grams with 25 samples. For 100 hard difficulty games with
an utterance length of 10. In this scenario, the same pattern as in 5.12 is shown,
where the values of the normalized distinct n-grams is lower than the values in
the table with 10 samples 5.11. This again implies that using 25 samples does not
necessarily result in more diverse samples when compared to 10 samples.
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5.3 Qualitative Results
This section will evaluate the quality of the generated utterances. Since there are
no implemented metrics in this paper for this type of evaluation, as their imple-
mentation was out of scope for this study, the assessment relies on our own human
perception. The utterances shown in figure 5.1 and figure 5.2 are drawn from the
same generated batch that corresponds to the other results in this paper, the DBD
utterances are based on DBD with a diversity penalty of 0.01 and separate group
for each sample utterance.

Both figures 5.1 and 5.2 demonstrate that multinomial sampling and beam decod-
ing generate similar sample utterances, suggesting that generating more samples
with these methods could be computationally wasteful as mentioned in (Vijayaku-
mar 2016). Diverse beam decoding produces diverse samples but sometimes loses
track of the target referent, resulting in diverse utterances that no longer accu-
rately describe the target. For example, the utterance "There is a women an
airplane around water a small plane" shown in figure 5.1 generated by DBD, dis-
plays this issue as such utterances do not contribute to solving the reference game.
The multinomial results also include non-fluent utterances, likely due to the ran-
domness introduced by the multinomial distribution when selecting the next word
of an utterance. This fluency issue is shown in example utterances such as, "A
baseball player holding child playing with a frisbee".

Overall, when examining the generated utterances from all three decoding meth-
ods, they generally describe the target image but lack the pragmatic reasoning
necessary when reference games involve very similar distractors. Specific objects
from the target and color-based descriptions are often missing. Therefore, it is un-
derstandable why the hard reference game results, as shown in Tables 5.10, 5.11,
and 5.12, display lower accuracy compared to the results from the easy reference
games.
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Figure 5.1: Utterances generated to describe an image of a girl using a cell phone
with the three implemented decoding methods. Multinomial sampling generates
grammatical mistakes due to the randomness in its distribution. Beam decoding
seems to produce non-diverse utterances, while diverse beam decoding sometimes
loses focus on the target due to extreme diversity
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Figure 5.2: Utterances generated to describe an image of a running baseball player
with the three implemented decoding methods. Multinomial sampling generates
grammatical mistakes due to the randomness in its distribution. Beam decoding
seems to produce non-diverse utterances, while diverse beam decoding sometimes
loses focus on the target due to extreme diversity.
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Chapter 6

Discussion and Conclusion

This chapter will discuss and conclude the results presented in chapter 5. The
discussion will primarily focus on the findings and limitations of this study, and
will offer recommendations for future research to address these limitations. The
conclusion will provide a final reflection on the study as a whole.

6.1 Discussion
The results in chapter 5 demonstrate that diversity considerably impacts prag-
matic reasoning within a reference game setting. Traditional beam decoding is
shown to be less optimal compared to a more diverse variant such as diverse beam
decoding. Surprisingly, even a simple method like multinomial sampling outper-
forms beam decoding in many areas, including accuracy and confidence.

Diverse beam decoding and multinomial sampling do show near equal performance.
However, the diverse beam decoding method requires significantly more compu-
tation time compared to multinomial sampling, which raises questions about its
feasibility when accuracy improvements are minimal. Diverse beam decoding only
slightly outperforms multinomial sampling in harder reference games, and the dif-
ference is less or equal to 1%. Nevertheless, the results indicate that diverse beam
decoding is a promising method, combining the fluency of beam decoding with the
diversity of multinomial sampling. With further adjustments, it could potentially
achieve even better results.

Due to the limitations of this paper, we could not measure the fluency of the
generated sample utterances thoroughly. If diverse beam decoding proves to be
significantly more fluent, it could outperform multinomial sampling by a greater
distance, providing better pragmatic descriptions of the target referent. Further
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research is needed to explore different pruning methods within the diverse beam
decoding algorithm. While this study used top-B beam selection, other techniques
like nucleus or multinomial beam selection within the diverse beam decoding al-
gorithm could produce different results. Additionally, experimenting with other
parameters, such as altering the temperature and maximum sequence length, could
provide further changes in results.

6.2 Conclusion
Diverse beam search improves traditional beam search, but it consistently falls
behind multinomial sampling in performance due to significantly longer runtimes,
which raises questions about its computational feasibility. Research indicates that
diverse beam search improves fluency, showing promising potential. Since, fluency
scoring was not feasible within the scope of this study, the exact impact of it could
not be measured.

Both diverse beam search and multinomial sampling demonstrate greater diversity
compared to traditional beam decoding, highlighting that their improved diversity
contributes to higher accuracy in referential games.

In conclusion, while diverse beam decoding offers advantages in terms of fluency
and diversity, its practical implementation is restricted by computational ineffi-
ciencies compared to multinomial sampling. Future research should explore opti-
mizations to resolve these trade-offs and further evaluate its impact on pragmatic
reasoning in reference games. Additionally, efforts to achieve higher accuracy with
diverse beam decoding would justify its computational costs, which currently limit
its feasibility.
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