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Abstract

Al-generated images are often shared in real-world scenarios through memes, fil-
ters, or social media, where they are modified into derivative images. Existing
Al-generated image detection (AID) methods, such as SPAI, struggle to detect
these altered images. We introduce a dataset pipeline with four robustness tests that
simulate real-world image modifications and evaluate SPAI on these challenging
scenarios. Results show a significant drop in SPAI’s performance. To address
this, we propose ROGER, a multi-modal model combining SPAI with comple-
mentary techniques, achieving improved detection accuracy across all test cases.
The code is publicly available at. https://github.com/Rickvanderveen/
deep-learning-2.git

1 Introduction

Generative models in artificial intelligence (AI) have made significant progress in generating photo-
realistic images [[15} 9} 30]]. This introduces new problems such as fake content being indiscernible
from real content, which poses a real danger to both individuals and the public sphere [24] and, as
such, calls for Al-generated image detection (AID). While prior research has developed detection
methods, these are usually specialized for particular generators and tend to fail to generalize across
different or unseen generators [[15]. Although more recent methods have started to move away from
this approach, they often still struggle to detect images in real-life scenarios [15]], such as Al-generated
images that are uploaded to social media, edited with a filter, or pasted into a meme. This is because
current AID methods primarily focus on a narrow set of image features or specific patterns within
the data, rather than capturing the broader, underlying structures of an image. This regularly leads
to these detection methods failing to accurately identify the image as Al-generated. [15]]. Building
on this concern, this report extends the work of the SPectral Al-generated Image detection (SPAI)
paper [15]] by further investigating methods for detecting Al-generated images. SPAI was selected
as it is the current state-of-the-art and best-performing model for AID. However, as it relies solely
on the spectral distribution of an image, it is not robust when the spectral distribution is distorted
in certain ways [15]]. As such, this report makes three contributions. First, it introduces a pipeline
to create four datasets that simulate real-world modifications of Al-generated images, referred to
as derivative images (Figure[Ta). Second, it utilizes these datasets of derivative images to evaluate
the robustness of SPAL Third, it combines the original SPAI approach with the techniques of two
additional papers, RINE [16] and PatchCraft [33]] (Figure [ID)), to investigate the development of the
RObust AI-GEnerated image Recognizer (ROGER), which is a more generalized and robust detection
model. Using ROGER for AID, the performance with respect to SPAI increases significantly, both
with modified and unmodified datasets.

*Equal contribution
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Figure 1: Visual representation of both the derivative image pipeline and the integrated model
approach pipeline.

2 Related work

Earlier detection methods have attempted to learn the common spatial artifacts in generated images
[13] for specific image generators. However, since each generator produces different artifacts, it is
impossible to learn all of them. This challenge further hinders AID methods, as they struggle to
generalize to newly created generators [13} 20} |15]. To address this limitation, only the characteristics
of real images are learned, enabling AID methods to generalize to unseen generators [20} |15} 23].
Earlier work targeted Generative Adversarial Network (GAN)-based generators, but newer diffusion
models produce more diverse and realistic images [8} |5, 25, [21]]. The artifact differences between
GANSs and diffusion models are even more evident than those among models of the same type [23].
Newer methods make use of the frequency domain of an image, which has been shown to provide
valuable information for AID [20, |15]]. The continuous development of image generation models
can cause AID to perform poorly on newer models. Methods such as DMID [5] and RINE [16]]
are capable at AID but fail to generalize across the latest image generators [15]]. The SPAI method
generalizes the best across older and latest image generators [[15]). It classifies Al-generated images as
out-of-distribution by learning the spectral distribution of real images. It outperforms state-of-the-art
methods, is more robust to perturbation, and works with images of any resolution [|15]]. However,
SPAI relies solely on spectral information and struggles to identify Al-generated images when the
spectral distribution is distorted.

3 Reproducibility of SPAI

Since this work builds upon SPALI, its performance is reproduced to verify its reproducibility and
results. This is done using the author’s implementation and pretrained weights of SPAI. Model
predictions are evaluated on the same metric by computing the average AUC for each fake image test
set over five real image test sets. The reproduced results are presented in Table[I] It shows that the
reproduced results do not differ much from the original results, making SPAI [15]] and its framework
highly reproducible.

Table 1: Comparison of SPAI with the reproduced SPAI results. Reported is the AUC averaged over
five datasets of real images. The fake datasets used are show in Table[I] The respective test sets for
real images are ImageNet [7], COCO [19]], Openlmages [17]], FODB [12f], and RAISE [6].

Image Size <0.5 MPixels 0.5 - 1.0 MPixels >1.0 MPixels AVG
Approach Glide [22] sp13{1] sp1.4 (1] | Fux (18] DALLE2 [27] sp2{1] sDXL f26] sD3 (10| GigaGAN {14] | Mivs [1] Mive.1 28] DALLE3 2] Firefly {1

SPAI [15 | 902 99.6 996 | 830 91.1 96.5 97.4 75.9 85.4 | 945 84.0 90.2 960 | 91.0
SPAI reproduced | 90.5 99.6 996 | 85 915 96.6 975 76.5 858 | 947 84.4 90.6 9.1 913




4 Extension

4.1 Image modifications

To assess the robustness of SPAI, four new datasets are introduced, each consisting of one of the
following image modifications: screenshot simulation, social media filter simulation, meme filters,
and Super-Resolution (SR). Specifically, the modifications are applied to the previously used test sets,
which encompasses 638 images for the MJv6.1 dataset and 1000 images for all other datasets. This
selection of modifications is made because they closely resemble real-life scenarios, which are not
currently well-represented in state-of-the-art datasets for AID. The exact procedure for each of these
modifications is described below.

Social media is widely used by everyone and is often the final destination for Al-generated images, as
users share them to reach each other. Therefore, simulating a screenshot of a social media platform
displaying an image closely resembles real-life scenarios. To simulate this, a template HTML page
was designed to closely mimic such a social media platform. Using the Python library Selenium,
images are dynamically injected into the HTML of the template page. To ensure each generated
screenshot is unique, several dynamic elements were randomized on the page, including like count,
comment count, share count, post status (saved or not), battery amount, current connection, account
avatar, account name, image caption, and current time.

Regarding the social media filter simulation, it is decided to simulate Instagram filters due to its
prevalence [3]]. To simulate such filters, Pilgram2, a Python library consisting of Instagram-like filters
[L1]], is used. For each image in a data folder, one of 40 filters is randomly applied to the image,
as any filter can occur in real-world scenarios. To compress the images similar to Instagram’s own
image compression, we utilize JPEG compression with a compression-level of 75% on each image
with a filter. The choice of the compression-level is motivated by the fact that Instagram uses a default
compression-level between 70-80% [31]].

The BSRGAN [32] is a super-resolution model and used to modify both fake and real images. Based
on [4], applying super-resolution can camouflage artifacts introduced by image generators, but is only
effective on images that are not fully synthetically generated. However, applying super-resolution
to real images can be approached from two sides. The first is viewing the image as fake after the
usage of super-resolution, since there are pixels that have been generated to create a larger image,
which could create artifacts alongside. The second option is treating the image as real even after the
super-resolution is used, as the understanding of the image is preserved. This is the perspective used
in this work. The authors in [4] note that using super-resolution on real images can cause confusion
by image detectors and degrade AID reliability. The BSRGAN is applied to both the synthetic images
and real images from the original dataset. The original image is downscaled by a factor of K, after
which super-resolution is applied to reconstruct an image of the same size as the original.

The final augmentation is an image meme filter. The idea behind this is similar to the screenshot
simulation, but inverted. Rather than adding noise outside of the image, noise is added inside of
the image. This is done through occlusion of the image. Two types of occlusion are used, inspired
by meme images on the Internet. The first type consists of text at the top and bottom of the image.
Since occlusion is the main focus, any text can be utilized and its content does not matter. To acquire
a set of sentences, the first two chapters of the Bible were used. A sentence is randomly chosen
and added to the image. Since there are only 2500 sentences and 10000 images that need to be
created, noise is added to the text to avoid overfitting. There is a random chance for two letters
in the text to be swapped. This creates more than 10,000 distinct sentences. The second type of
occlusion is emojis that are pasted into the image. This once again occludes the image and distorts
the spectral distribution. Other measures are also taken to avoid overfitting. The horizontal and
vertical positions of the text are translated by a small randomized offset, the font type and font size
are randomized. Furthermore, the emoji size and emoji amount are also randomized. All these
randomizations are within a certain interval. They ensure that the model will likely not learn any
aspect of the augmentations other than the original image.

4.2 Integrated Model Approach

To improve the robustness and generalization capability of AID, we propose a hybrid model (ROGER)
that combines the following three state-of-the-art detector models [29]: SPAI [15]], RINE [16], and
PatchCraft [33]. Each model captures different aspects of the image, offering complementary
perspectives. Specifically, RINE focuses on mid-level representations by extracting features from



intermediate layers of CLIP [[16]. PatchCraft emphasizes low-level texture inconsistencies through
patch-based analysis and inter-pixel correlations [[33]]. SPAI leverages low-level spectral distributions
by learning to reconstruct masked frequency components. To combine these diverse representations,
the final feature representations is extracted from each model, projected into a 256-dimensional space
and normalized using a layer normalization. These three embeddings are concatenated into a unified
feature vector. This 768-dimensional representation is then fed into a Multi-Layer Perceptron (MLP).
This MLP has 2 layers with a size of 1536 with ReLU as activation function and dropout of 0.5 and a
final layer to predict the probability that the image is fake. The MLP classifier is trained on 35,994
images (17,997 real, 17,997 generated, with each having 16,198 training images and 1799 validation
images) sourced from the original SPAI training dataset [[15]]. This combined approach makes use of
the strengths of each individual model, allowing for a detailed analysis of both spatial and frequency
domain features, leading to improved detection performance.

4.3 Results

The evaluation of SPAI on the four modified datasets is displayed in Table[2] As seen in this Table,
each of the datasets deteriorates the performance of SPAI, with the screenshot data being the most
detrimental. This observation supports the notion that SPAI is not robust against real-world contexts.

Table 2: SPAT’s evaluation on the modified datasets. The modified datasets identify the weaknesses
of SPAI, as it decreases SPAI’s performance during inference with respect to the baseline (SPAI on
data without RAISE). The decrease in performance is displayed in red.

Image Size <0.5 MPixels 0.5 - 1.0 MPixels >1.0 MPixels AVG
Approach Glide SD1.3 SDI1.4 | Flux DALLE2 SD2 SDXL SD3 GigaGAN | MJvS MIJv6.l DALLE3 Firefly

SPAI on data without RAISE 91.1 99.6 99.6 | 84.7 92.1 969 977 78.1 86.9 95.0 85.5 91.3 96.4 91.9
SPAI on meme data 63.1 943 951 | 745 81.9 863 92.1 655 81.0 90.0  78.1 78.8 748 |81.2(10.7])
SPAI on SR data 777 946 951 | 721 714 879 914 385 69.8 899 798 92.4 88.0 |80.6(11.3 )
SPAI on Instagram filter data 764 876 885 | 700 747 740 793 669 66.3 682 687 76.4 683 [743(17.6 ])
SPAI on screenshot simulation data | 80.3 929 933 | 41.5 51.1 523 674 514 63.8 515 523 493 622 |62.3(29.6 )

When assessing ROGER on the same four datasets, we observe an inverse trend in performance. In
Table 2] each evaluation of ROGER is compared to that of SPAI, with the respective increase in
performance being noted. In all cases, ROGER outperforms SPAI in the average AUC, making it
more robust than SPAI in those cases.

Table 3: ROGER (ours) evaluation on the modified datasets. The displayed differences are perfor-
mance increases with respect to the corresponding results from Table El

Image Size <0.5 MPixels 0.5 - 1.0 MPixels ‘ >1.0 MPixels AVG
Approach Glide SD1.3 SDI1.4 | Flux DALLE2 SD2 SDXL SD3 GigaGAN | MJv5 MIJv6.1 DALLE3 Firefly

ROGER on data without RAISE 98.9 100.0 100.0 | 98.9 99.1 100.0 100.0 67.0 99.9 99.7 99.7 84.0 98.1 95.8(3.91)
ROGER on meme data 944 998 998 |95.9 97.2 99.6 999 517 99.5 98.9 98.8 62.2 79.8 | 90.6 (9.4 1)
ROGER on SR data 99.8  100.0 100.0 | 99.9 99.9 100.0 100.0 46.3 99.9 100.0  100.0 100.0 100.0 [ 95.8(15.2 1)
ROGER on Instagram filter data 824 913 918 | 624 83.1 863 795 556 68.7 71.9  60.5 64.3 850 | 75.6(1.3 1)
ROGER on screenshot simulation data | 90.9  98.1 98.2 |90.1 95.7 923 97.1 69.1 98.6 91.2 97.0 74.4 924 |91.2(28.91)

5 Conclusion

In this paper, we introduced a pipeline consisting of four robustness tests designed to evaluate
performance on derivative images. Furthermore, we introduced four new datasets that represent
real-world scenarios for assessing the robustness of AID models. Additionally, we proposed the
RObust AI-GEnerated image Recognizer (ROGER), which can generalize to both derivative and
non-derivative images. We find that ROGER exhibits a higher performance when compared to SPAI
and generalizes better to derivative images. However, since ROGER utilizes the embeddings of three
models, it is slower and more computationally expensive than SPAI. The main limitation of ROGER
is that it is entirely dependent on the three base models (SPAI, RINE, and PatchCraft). If all these
models fail to perform well, the resulting performance will also be low. For future work, we could
fine-tune both SPAI and ROGER on augmented and derivative images and whether they will improve
in performance.
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