
Understanding (Sub)graphs through LLM Commentary and
Query Entity Significance Scores

Maarten Drinhuyzen*†

University of Amsterdam
Jasper van der Valk∗‡

University of Amsterdam
David Werkhoven∗§

University of Amsterdam
Xin Yu Zhu∗¶

University of Amsterdam

Figure 1: Visual interface front page with several interactive components, allowing the user to retrieve and under-
stand graphs intuitively.

ABSTRACT

Graph data has increasingly become more prevalent due
to its capabilities of capturing complex structures and rela-
tionships between entities. However, querying graphs from
such data remains non-trivial as it often requires knowl-
edge of query languages. This, in turn, limits users who
do not have a technical background. To address the issue,
this study proposes an interactive and user-friendly visual
system that allows users to retrieve graphs using natural
language queries. Additionally, besides the free text graph
querying component, the interface also provides users with
the option to improve the interpretability of their graph
queries. In particular, this is done by leveraging query term
significance scores, which subsequently serve as phrase-
level feedback over the input query.

The code is publicly available at: https://github.
com/PirateEra/Multimedia-Analytics.git

1 INTRODUCTION

In recent years, there has been a rapid growth in network
structures, such as biological, communication, social, and
computer networks [19]. These networks can be repre-

*equal contribution
†e-mail: maarten.drinhuyzen@student.uva.nl
‡e-mail: jasper.van.der.valk@student.uva.nl
§e-mail: david.werkhoven@student.uva.nl
¶e-mail: xinyu.zhu2@student.uva.nl

sented as graphs [19], which are a powerful way to cap-
ture complex and relational data [5]. Given the growth and
diversity of these data structures, an increased interest in
effectively querying and data mining graphs has emerged
in real-world applications [19].

However, querying graph data typically requires knowl-
edge of query languages, which not only limits the accessi-
bility for users without a technical background, but also re-
stricts the users from obtaining valuable insights from the
data [11]. This has raised the following question: How can
we use architectures like large language models (LLMs) to
allow users to query graph data without needing to learn a
graph query language?

A recent study, LinkQ [11], addresses this problem by
leveraging a pipeline in which an LLM analyzes the user’s
question and converts it into a knowledge graph query to
retrieve the desired graphs.

In G-Retriever [8], the users are also able to query
graphs using natural language, but use a Retrieval-
Augmented Generation (RAG) approach instead for re-
trieval. In contrast with LinkQ [11], G-Retriever [8] is not
limited to solely knowledge graphs, but also extends its
applications to both scene graphs and explanation graphs
(graphs for common sense reasoning).

In this work, we aim to extend upon G-Retriever [8] by
delivering an interactive user-friendly interface (Figure 1)
that not only allows for free text graph querying, but also
provides a comprehensive explanation of why the LLM
generated the final answer that it did. In addition, each
noun, verb, and preposition phrase in the query also con-
tains an indication score of how influential it was in gener-
ating the subgraph result, aiding the user to fine-tune their

https://github.com/PirateEra/Multimedia-Analytics.git
https://github.com/PirateEra/Multimedia-Analytics.git

queries if desired. Our main contributions can be summa-
rized as follows:

• User-friendly interface for free text graph query-
ing: an interactive interface that allows any user to
query graph data in natural language, visualize the
original graphs and their retrieved subgraphs, and an-
swer the user’s query using an LLM, accompanied by
an explanation of how it got to that specific answer.

• Improve the users’ interpretability of graph
queries: phrase-level feedback over the user’s query
by providing significance scores of how relevant the
phrase was for retrieving the final subgraph. Each
noun, verb, and preposition phrase is also accom-
panied by a different subgraph, which is retrieved
by modifying queries using a perturbation strategy
based on lexical units.

In the following sections, we first outline, in Section 2,
all the related work that we researched and took inspiration
from in our proposed solution. Then, in Section 3, we thor-
oughly discuss our methodology, including the application
overview, the utilized datasets, the LLM setup, and lastly,
the entity-level perturbation. In Section 4, we categorize
our interaction design into high-level and low-level inter-
actions, and in Section 5, we introduce our implementation
design of the created interface using Dash and Plotly. Fi-
nally, Section 6 refers to the conducted evaluation process
on our MMA solution, and Section 7 finalizes the paper by
summarizing the overall findings and noting the respective
limitations.

2 RELATED WORK

2.1 Multimedia Analytics
Multimedia Analytics (MMA) integrates interactive visu-
alizations to enhance human-machine interactions. Zhalka
et al. [18] developed a general multimedia model, connect-
ing low-level methods with high-level analytical objectives
through user interaction. They later built on this frame-
work [15] to integrate with foundation models, emphasiz-
ing human-AI collaboration and enhancing transparency.

Combining MMA with Artificial Intelligence (AI) has
recently gained more attention as MMA visualizations
could be used to further understand, analyze, and compare
various deep learning models [9]. In particular, researchers
have utilized these visualizations to improve the explain-
ability of deep learning models [9], making the models
more understandable to their users. However, despite the
focus on explainability in AI models, limited research has
been conducted on the explainability of Graph Neural Net-
works (GNNs) through visualizations [9]. Therefore, Jin
et al. [9] proposed GNNLens, which is a visual analytics
system that consists of several visualization components,
including 2D node projections and full graph visualiza-
tions. By displaying these visualizations, GNNLens not
only makes the GNN and its predictions more understand-
able to its users, but also amplifies their cognition by re-
ducing the information search [4].

2.2 Graphs in Retrieval-Augmented Generation
The field of RAG, first explored by Lewis et al. [10],
focuses on the combined task of retrieval and question-

answering, aiming to mitigate hallucination by retriev-
ing relevant documents for response generation. Sev-
eral works have researched the intersection of RAG and
Graphs. GraphToken [13], is intended to create accu-
rate graph presentations to improve graph-based question-
answering. A variant of this is, Graphormer [16], a
transformer-based Graph representation learner, achieving
state-of-the-art performance. G-Retriever [8] builds on
GraphToken, but also matches the query to a subgraph,
using the PCST-algorithm, which is subsequently used
to generate a response. The response is generated by a
transformer-based LLM, which takes as input a graph to-
ken alongside a text embedding.

2.3 LLMs in Multimedia Analytics
With the rise of LLMs [3, 12], prompt engineering has
gained increased interest for effectively using such mod-
els [7]. To assist users in refining their prompts, Feng et
al. [7] provided PromptMagician, a visual analysis system
that allows users to explore generated and retrieved results
based on a given prompt, and refine their prompt based on
the recommended prompt keywords from the prompt key-
word recommendation model.

Similar to PromptMagician [7], LinkQ [11] also aims to
refine user prompts on the visual interface, but utilizes an
LLM for that process instead. In particular, LinkQ [11]
uses the LLM to first interpret the user’s question, fol-
lowed by the conversion of the question into a well-formed
knowledge graph query, then presents the user with the
choice of modifying or executing the generated query, and
finally summarizes the results after executing the knowl-
edge graph query. By using this framework, any user’s
questions can iteratively be refined, which further facil-
itates both targeted and exploratory analysis of the data
[11].

In G-Retriever [8], however, LLMs are not employed
to refine the user’s questions. Rather, they are used in the
RAG approach to retrieve the relevant parts of a graph and
generate a response based on the final retrieved subgraphs.
Integrating LLMs into the framework enables users to
query graphs in natural language and provides them with a
flexible question-answering interface [8].

2.4 Graph similarity
In many applications regarding graphs, there has been a
demand for a quantitative measure of graph similarities.
Zager and Verghese [17] define the notion that two graphs
are similar if their neighborhoods are similar. Specifically,
an edge similarity score can be introduced, where an edge
in one graph is similar to an edge in another graph if their
respective source and destination nodes are identical [17].

3 METHODOLOGY

This section describes the method in greater detail. First, a
high-level overview of the application is given. Afterward,
the different parts are discussed in greater detail. The gen-
eral pipeline is displayed in Figure 2.

3.1 Formalization
We define a global knowledge graph G, from which all re-
trieved subgraphs are sampled.
Given a natural language prompt P , we extract a set of

Figure 2: Pipeline of querying graphs using natural language queries and calculating query significance scores when needed.
First, the PCST algorithm retrieves a subgraph based on the user’s query. Then, the LLM takes the subgraph as input and
generates an answer for the corresponding user query. The generated response is accompanied by an explanation of how the
LLM arrived at that answer. Regarding the phrase significance values, the scores will only be calculated when the compute
significance scores flag is set to TRUE. In that case, an entity-level perturbation is applied to the input query, after which the
PCST-algoritm is utilized to retrieve a subgraph from each modified query version. After obtaining the subgraphs, the phrase
significance scores can be calculated to present to the user.

query entities S = E(P) using an arbitrary entity extrac-
tion function E, where each s ∈ S denotes a lexical unit
in P .
For subgraph retrieval, we employ the PCST algorithm [1],
which takes P and G as input and returns a subgraph
G′ ⊆ G:

G′ = PCST (P,G)
We quantify the deviation between the original subgraph
G′ and the perturbed subgraph G−s using the significance
score:

J(A,B) =
|A ∩B|
|A ∪B|

Ultimately, we define the importance for entity s ∈ S w.r.t.
the subgraph G’ as the significance score:

Significance(s;G′,G−s) = 1−J(G′,G−s) = 1−|G
′ ∩ G−s|
|G′ ∪ G−s|

The full procedure for computing these entity-level
significance scores is described in our Algorithm 1.

Algorithm 1: Entity-Level Significance Scoring
via Query Perturbation

Data: P,G
Result: Entity significance scores

G′ ← PCST (P,G);
S ← E(P);

for s ∈ S do
G−s = PCST (P−s,G)
Significance(s)← 1− J(G′,G−s)

end
return Significance(s) for all s ∈ S

3.2 Application Overview
Our work extends upon the g-retriever architecture. The
flow of the application is as follows. First, the user selects
a dataset and sample graph from that dataset on the top-left

of the screen. This will visualize the full chosen graph in
the middle-right of the screen. Subsequently, the user can
write a prompt in the bottom-left of the screen, asking a
question about the graph. This question is utilized by the
Prize Collecting Steiner Tree Algorithm (PCST), the same
one used in G-retriever [8], to create a subgraph based on
the question (for reference, see step 3 in Figure 3).

Figure 3: Step 3 and 4 of the g-retriever architecture, taken
directly from its original paper [8].

This subgraph is then converted into a natural language
string. The string is inserted at the start of a prompt tem-
plate for context. Then this prompt is given to an LLM,
which will infer the answer to the question based solely on
the subgraph. The returned answer is then shown in a text
box next to the subgraph.

Furthermore, when the subgraph is returned by the
PCST algorithm, the visualized graph is zoomed in to high-
light the retrieved subgraph. The subgraph then gets a
color highlight, allowing the user to find it again when
they move the camera away from it. Each noun phrase,
verb phrase, and preposition phrase in the original ques-
tion will also be highlighted with its contribution to the
returned subgraph. This is done using significance score.
There are also multiple interactions that can be utilized in
the visualization. These are described in Section 4.

3.3 Datasets

The data that was utilized was retrieved from the GraphQA
benchmark in G-retriever [8], which consists of the fol-
lowing three graph datasets: ExplaGraphs, SceneGraphs,
and WebQSP. ExplaGraphs is a generative commonsense
reasoning dataset, containing a total of 2,766 graphs.
SceneGraphs is a visual question-answering dataset with
100,000 graph samples. Lastly, WebQSP is a knowl-
edge graph question-answering dataset consisting of 4,737
graphs.

For triviality, we employed a subset of the origi-
nal GraphQA benchmark for the interface. Specifically,
we used one graph from the ExplaGraphs dataset and
five graphs from each of the SceneGraphs and WebQSP
datasets.

3.4 LLM Setup

The LLM is implemented using the Ollama Python pack-
age. This package allows for the utilization of quan-
tized LLMs for personal computers. The LLM model
used is Llama3.2:3b (https://ollama.com/library/
llama3.2) The prompt structure can be seen in Figure
4. First the subgraph is added. Then the user’s ques-
tion is pasted in. Finally some miscellaneous instructions
are given to make outputs more robust and consistent with
each other.

<subgraph>

...

</subgraph/>

Based on the above graph only, and only use the above graph info.

Answer the following question: <userprompt> ... </userprompt/>\n

Keep in mind UnknownEntity_* represents unknown labels of nodes in

the graph, you may infer relationships through them.\n

if you think the graph does not provide the right or enough info

to answer, then mention that instead.\n

Start with your definite answer and after a very short brief

explanation on how you got the answer.\n

Figure 4: LLM prompt template given to the model in order
to generate the output.

3.5 Entity-level Perturbation

Inspired by the Leave-one-token-out (LOTO) method [14],
we employ a similar perturbation strategy based on lexical
units. Specifically, for each provided user query, we re-
move one entity in the query, either a noun phrase, verb
phrase, or preposition phrase, and recompute the corre-
sponding subgraph using the PCST-algorithm. We employ
the Python package nltk [2] for parsing the lexical units in
the prompt (see Figure 5).

Figure 5: Example taken directly from [14]. Following our
algorithm 1, the entities would be: {Noun phrase: ”John”,
Verb phrase: ”visited Mary”, Preposition phrase: None}.
Hence the perturbed prompts would respectively be: [”vis-
ited Mary this afternoon”, ”John this afternoon”].

As described in Algorithm 1, the significance scores are
used to estimate the influence of each entity in the query
on the retrieval of the final subgraph. This measurement
was determined by considering the edges of graphs as sets,
which can then be used to compute the similarity between
them. [6]. The significance scores are finally calculated
using the edges set of the original retrieved graph and the
retrieved graph using the modified query with the one en-
tity removed.

4 INTERACTION DESIGN

In order to achieve this transparency and interpretability,
we ensure our visualizations are interactive. We classify
these interactions into high-level and low-level interac-
tions.

• High-level interactions: We want to let users ex-
plore and browse the subgraph to ensure maximum
transparency. This is part of the ”Browse” high-level
user goal.
Another high-level user goal is ”Assess”. This will
allow users to assess the correctness of the output
query based on the visualized sub-graph with high-
lights and the input query. Users will also be able to
compare the effectiveness of different input prompts
by using the significance score. This last part belongs
to the ”Compare” high-level goal.

• Low-level interactions: We add zooming and pan-
ning to the subgraph. This will ensure that graphs
of arbitrary size can be viewed and understood by
the user. The nodes can also be moved by the user.
These interactions are part of the ”Explore” class. A
slider is included to show/hide a certain number of
nodes. If the graph contains many nodes, showing
all of them to the user could overwhelm the user or
make the graph unreadable. This interaction is part of
the ”Abstract/Elaborate” high-level interaction class
and the ”Filter” low-level task. Also added is a tog-
gle to show/hide the self-loops of the graph, as this
clutters the visualization of the sub-graph but might
be useful on special occasions. Finally, there is also a
button to show only the subgraph, allowing for easier

https://ollama.com/library/llama3.2
https://ollama.com/library/llama3.2

Figure 6: Interaction Pipeline, showing possible interactions within our visualization.

viewing. This is also part of the ”Filter” low-level
task.
Furthermore, when a node is clicked, info about the
node and connected nodes will be shown. This will
allow users to more accurately navigate through the
graph in order to base their prompts on it. This is part
of the ”Retrieve Value” low-level task.

As such, the following interactions are added to the vi-
sualization and can be seen in Figure 6. The figure can be
read as follows. The blocks in red are part of the backend.
The blocks in green are simple functions to calculate val-
ues. The blocks in yellow can be seen as code blocks that
will update or change the visualization in a specific way.
The blue block in the middle is the visualization to be dis-
played. Finally, red arrows are manually activated by the
user, while black arrows are automatic.

5 IMPLEMENTATION DESIGN

To visualize and interact with the graph-based results, we
choose to build our interface using Dash and Plotly. Dash
is used for interactive web applications, which is perfect
for both data visualization and dynamic user interaction.
At the center of our architecture, we make use of Dash
Cytoscape, which is a component for rendering and inter-
acting with graph structures. We use this to visualize the
subgraph returned by G-Retriever’s PCST-algorithm [8].
Nodes and edges in the graph are styled based on their at-
tributes and connection to the retrieved subgraph. This is
done using visual properties such as color, text, and node

size. These style differences between nodes and edges
will, in turn, help the user interpret which graph elements
were most relevant to the query.

The interface is organized horizontally across a single
page, with three main sections. The left-hand side include
dropdowns for choosing a dataset and graph, a text input
form for submitting a natural language query and desired
seed, a button that initiates the subgraph retrieval and its vi-
sualization process, a threshold bar for selecting the num-
ber of nodes, a toggle widget for calculating the signifi-
cance scores, and finally, a toggle widget for displaying
the self-loops on or off.

The center part of the interface visualizes the retrieved
subgraph with the use of a Cytoscape component. Dash
callbacks dynamically update the graph whenever the user
submits a new query, changes the visible nodes threshold,
or selects one of the left-out verb, noun, or preposition
phrases (only visible if the toggle widget for calculating
the significance scores is on).

On the right-hand side, we include a query output text
box that displays the generated answer to the given query
and provides an additional, extensive explanation of how
the LLM arrived at that particular answer or conclusion.
If the user decides to calculate the significance scores, the
query phrase significance scores will also be displayed, but
below the LLM output in a bar plot figure.

Ultimately, all components are connected through
Dash’s callback system, which ensures a seamless, inter-
active singular page. This architectural design should sup-
port the intuitive use of the interface, assisting users in re-

trieving graphs effectively and aiding them in refining their
queries when desired.

6 EVALUATION

We aim to evaluate the increase in the users’ fluency in
interpreting and interacting with graph-based language.
Therefore we conduct experiments on users to assess the
visualization’s contribution to human learning. We mea-
sure the zero-shot satisfaction rate: the cases in which the
system’s initial response is satisfactory to the user (binary
judgment). If the initial output is unsatisfactory, our inter-
face provides visual feedback that enables the user to make
a single, informed modification. In our experiments, we re-
fer to the latter as one-shot satisfaction rate. The one-shot
satisfaction rate includes the zero-shot cases and reflects
whether the user was satisfied after at most one interac-
tion with the system. The efficacy of our visualization is
substantiated by the increase in first-shot satisfaction rates.

The experiments were conducted with 4 users, each
completing 25 trials, resulting in a total of 100 trials. We
split the population in two equal groups: the group without
feedback and the group with visual feedback (see Table
1).

Table 1: Participants and trials per group, including study-
wide totals.

Group Participants Total Trials

No Feedback 2 50
Visual Feedback 2 50

Total 4 100

In both cases, users were shown a graph per trial and
asked to formulate a natural language question. Users can
prompt the system twice. If the response is initially sat-
isfactory that contributes to the zero-shot satisfaction rate,
if a second prompt was needed and the response was then
satisfactory, it contributed to the one-shot satisfaction rate.
The group without feedback is presented with a static im-
age of the full graph. The group with visual feedback, on
the contrary, used our interactive interface with visual and
phrase-level feedback.

The zero- and one-shot satisfaction rates were measured
over all trials (see Figure 6). All participants were contrib-
utors to this research.

ze
ro

sh
ot

on
e sh

ot
with

ou
t f

ee
db

ac
k

on
e sh

ot
with

fee
db

ac
k

0

10

20

30

40

50

60

48%

38%

52%

Sa
tis

fa
ct

or
y

R
at

e
(%

)

Distribution of user satisfaction rates for zero-shot (com-
bined with and without feedback) and one-shot (seperated)
interactions in our user study (n=100, zero-shot=50, one-
shot-with-feedback=25, one-shot-without-feedback=25).

7 DISCUSSION AND CONCLUSION

This research aims at improving the interpretability and
steerability of graph querying languages and enhancing
human understanding. We augment the previous work
on G-Retriever [8], by visualizing both the subgraph and
query term significance, leveraging ideas from Entity-level
perturbation strategies [14].

We implemented an interactive user interface, leverag-
ing Dash and Plotly, enabling users to browse, assess, and
compare graph data using natural language.

In our study, we observed a 14% increase in one-shot
satisfaction rates for the group that used our visual inter-
face, compared to the control group without visual feed-
back (See Figure 6). Participants using the visual interface
were actually able to get a satisfactory response from the
graph retriever 41 out of 50 times, suggesting that the vi-
sual feedback not only improved satisfaction rates but it
also gave relevant insights.

However, to draw stronger conclusions, additional ex-
periments with a larger sample are required, as the sam-
ple in the current experiments is small and potentially
biased. Furthermore, given the novelty of graph query
languages complemented by Multimedia Analytics, no
relevant benchmarks exist to compare our performance.
Therefore, this work serves as a baseline for future re-
search in this direction. This places our work in quite a
niche but novel direction. Unlike similar works, such as
LinkQ [11] or RagEX [14], which focus on visualizing
query term significance scores in graph-based retrieval set-

tings, our approach connects these significance scores to
the retrieved subgraph. In summary, this work contributes
a novel interactive interface for graph-based natural lan-
guage querying and introduces subgraph-level phrase sig-
nificance visualization specifically for graph retrieval. Our
findings suggest that our interface can improve one-shot
user satisfaction and simultaneously provide insights into
graph querying.

Future research could focus on optimizing perturbation
strategies to maximize output variance in response to query
token manipulations, thereby enhancing the sensitivity and
interpretability of phrase importance scores. Additionally,
another promising direction is to further explain how the
retrieved subgraph influences the LLM’s output, accompa-
nied by visualizations for interoperability.

Ultimately, we hope this work serves as a foundation for
future research towards more explainable, steerable, and
user-friendly graph querying systems, in the broader field
of Multimedia Analytics.

REFERENCES

[1] D. Bienstock, M. X. Goemans, D. Simchi-Levi, and
D. Williamson. A note on the prize collecting traveling
salesman problem. Mathematical programming, 59(1):413–
420, 1993. 3

[2] S. Bird, E. Klein, and E. Loper. Natural Language Process-
ing with Python. 01 2009. 4

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan,
P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell,
et al. Language models are few-shot learners. Advances
in neural information processing systems, 33:1877–1901,
2020. 2

[4] S. K. Card, J. Mackinlay, and B. Shneiderman. Readings
in information visualization: using vision to think. Morgan
Kaufmann, 1999. 2

[5] R. Das and M. Soylu. A key review on graph data science:
The power of graphs in scientific studies. Chemometrics and
Intelligent Laboratory Systems, 240:104896, 2023. 1

[6] A. Fender, N. Emad, S. Petiton, J. Eaton, and M. Naumov.
Parallel jaccard and related graph clustering techniques. In
Proceedings of the 8th Workshop on Latest Advances in
Scalable Algorithms for Large-Scale Systems, pp. 1–8, 2017.
4

[7] Y. Feng, X. Wang, K. K. Wong, S. Wang, Y. Lu, M. Zhu,
B. Wang, and W. Chen. Promptmagician: Interactive prompt
engineering for text-to-image creation. IEEE Transactions
on Visualization and Computer Graphics, 30(1):295–305,
2023. 2

[8] X. He, Y. Tian, Y. Sun, N. V. Chawla, T. Laurent, Y. LeCun,
X. Bresson, and B. Hooi. G-retriever: Retrieval-augmented
generation for textual graph understanding and question
answering. In A. Globerson, L. Mackey, D. Belgrave,
A. Fan, U. Paquet, J. Tomczak, and C. Zhang, eds., Ad-
vances in Neural Information Processing Systems, vol. 37,
pp. 132876–132907. Curran Associates, Inc., 2024. 1, 2, 3,
4, 5, 6

[9] Z. Jin, Y. Wang, Q. Wang, Y. Ming, T. Ma, and H. Qu.
Gnnlens: A visual analytics approach for prediction error
diagnosis of graph neural networks. IEEE Transactions
on Visualization and Computer Graphics, 29(6):3024–3038,
2022. 2

[10] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin,
N. Goyal, H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel,
et al. Retrieval-augmented generation for knowledge-

intensive nlp tasks. Advances in neural information process-
ing systems, 33:9459–9474, 2020. 2

[11] H. Li, G. Appleby, and A. Suh. Linkq: An llm-assisted
visual interface for knowledge graph question-answering.
In 2024 IEEE Visualization and Visual Analytics (VIS), pp.
116–120. IEEE, 2024. 1, 2, 6

[12] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright,
P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, et al.
Training language models to follow instructions with human
feedback. Advances in neural information processing sys-
tems, 35:27730–27744, 2022. 2

[13] B. Perozzi, B. Fatemi, D. Zelle, A. Tsitsulin, M. Kazemi,
R. Al-Rfou, and J. Halcrow. Let your graph do the talking:
Encoding structured data for llms, 2024. 2

[14] V. Sudhi, S. R. Bhat, M. Rudat, and R. Teucher. Rag-ex: A
generic framework for explaining retrieval augmented gen-
eration. pp. 2776–2780, 07 2024. doi: 10.1145/3626772.
3657660 4, 6

[15] M. Worring, J. Zahálka, S. van den Elzen, M. T. Fischer, and
D. A. Keim. A multimedia analytics model for the founda-
tion model era, 2025. 2

[16] C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen,
and T.-Y. Liu. Do transformers really perform bad for graph
representation?, 2021. 2

[17] L. A. Zager and G. C. Verghese. Graph similarity scoring
and matching. Applied mathematics letters, 21(1):86–94,
2008. 2

[18] J. Zahálka and M. Worring. Towards interactive, intelligent,
and integrated multimedia analytics. In 2014 IEEE confer-
ence on visual analytics science and technology (VAST), pp.
3–12. IEEE, 2014. 2

[19] P. Zhao and J. Han. On graph query optimization in large
networks. Proceedings of the VLDB Endowment, 3(1-
2):340–351, 2010. 1

	Introduction
	Related Work
	Multimedia Analytics
	Graphs in Retrieval-Augmented Generation
	LLMs in Multimedia Analytics
	Graph similarity

	Methodology
	Formalization
	Application Overview
	Datasets
	LLM Setup
	Entity-level Perturbation

	Interaction design
	Implementation design
	Evaluation
	Discussion and Conclusion

